①CE=BD; ②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四邊形BCDE= BD?CE;⑤BC2+DE2=BE2+CD2 .
請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)
答:選取的三條線段為.
答:畫出的直角三角形為△.
定義:到三角形的兩個頂點距離相等的點,叫做此三角形的準外心。
舉例:如圖1,若PA=PB,則點P為△ABC的準外心。
應(yīng)用:如圖2,CD為等邊三角形ABC的高,準外心P在高CD上,且PD= AB,求∠APB的度數(shù)。
探究:已知△ABC為直角三角形,斜邊BC=5,AB=3,準外心P在AC邊上,試探究PA的長。