如圖,已知△ABC為等邊三角形,AB=2,點D為邊AB上一點,過點D作DE∥AC,交BC于E點;過E點作EF⊥DE,交AB的延長線于F點.設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )
如圖,四邊形ABHK是邊長為6的正方形,點C、D在邊AB上,且AC=DB=1,點P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MN、QR的中點,連接EF,設(shè)EF的中點為G,則當(dāng)點P從點C運動到點D時,點G移動的路徑長為( )
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是( )
如圖,有一顆棋子放在圖中的1號位置上,現(xiàn)按順時針方向,第一次跳一步到2號位置上第二次跳兩步跳到4號位置上,第三次跳三步又跳到了1號位置上,第四次跳四步…一直進(jìn)行下去,那么第2017次跳2017步就跳到了號位置上.
當(dāng)點P與點Q重合時,如圖1,寫出QE與QF的數(shù)量關(guān)系,不證明;
當(dāng)點P在線段AB上且不與點Q重合時,如圖2,(1)的結(jié)論是否成立?并證明;
當(dāng)點P在線段BA(或AB)的延長線上時,如圖3,此時(1)的結(jié)論是否成立?請畫出圖形并給予證明.
如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.
在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.