如圖①,是一張直角三角形紙片,∠B=90°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過(guò)多次操作發(fā)現(xiàn),當(dāng)沿著中位線(xiàn)DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過(guò)證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為.
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為.(用含a,h的代數(shù)式表示)
如圖③,有一塊“缺角矩形”ABCDE,AB=30,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷(xiāo)售總額﹣總成本)