如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點(diǎn)C作⊙O的切線BC,E是BC的中點(diǎn),AB交⊙O于D點(diǎn).
已知:如圖①,四邊形ABCD內(nèi)接于⊙O.
求證:∠B+∠D=180°.
證法1:如圖②,作直徑DE交⊙O于點(diǎn)E,連接AE、CE.
∵DE是⊙O的直徑,
∴( ).
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所對(duì)的弧是 ,
∴( ).
∴∠B+∠ADC=180°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
證法2:
( 1 )利用直尺和圓規(guī)作△ABC的外接圓O(不寫作法,保留作圖痕跡);
( 2 )求證:DE是⊙O的切線.
如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
若⊙O的半徑為 cm,弦BD的長(zhǎng)為3cm,求CF的長(zhǎng).