解:原式 ①
②
③
任務(wù)一:以上解答過(guò)程從第步開(kāi)始出現(xiàn)錯(cuò)誤.
任務(wù)二:請(qǐng)你寫(xiě)出正確的解答過(guò)程.
在初中數(shù)學(xué)課本中重點(diǎn)介紹了提公因式法和運(yùn)用公式法兩種因式分解的方法,其中運(yùn)用公式法即運(yùn)用平方差公式:a2-b2=(a+b)(a-b)和完全平方公式:a2±2ab+b2=(a±b)2進(jìn)行分解因式,能運(yùn)用完全平方公式分解因式的多項(xiàng)式必須是三項(xiàng)式,其中有兩項(xiàng)能寫(xiě)成兩個(gè)數(shù)(或式)的平方和的形式,另一項(xiàng)是這兩個(gè)數(shù)(或式)的積的2倍.當(dāng)一個(gè)二次三項(xiàng)式不能直接運(yùn)用完全平方公式分解因式時(shí),可應(yīng)用下面方法分解因式,先將多項(xiàng)式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項(xiàng)式ax2+bx+c的配方法.再運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.
例如:x2+8x+7
=x2+8x+16-16+7
=(x+4)2-9
=(x+4+3)(x+4-3)
=(x+7)(x+1)
根據(jù)以上材料,完成相應(yīng)的任務(wù):
①x2+6x+8;
②x2-6x-7.