直線a、b、c、d的位置如圖,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于( )
如圖所示,反映的是九(1)班學(xué)生外出乘車、步行、騎車的人數(shù)直方圖的一部分和圓形分布圖,下列說法①①九(1)班外出步行有8人;②在圓形統(tǒng)計圖中,步行人數(shù)所占的圓心角度數(shù)為82°;③九(1)班外出的學(xué)生共有40人;④若該校九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的人約有150人,其中正確的結(jié)論是( ?。?br>
如圖,在平面直角坐標(biāo)系中,矩形ABOC的兩邊在坐標(biāo)軸上,OB=1,點(diǎn)A在函數(shù)y=﹣(x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點(diǎn)A1在函數(shù)y=(x>0)的圖象上,C1O1與此圖象交于點(diǎn)P,則點(diǎn)P的縱坐標(biāo)是( ?。?/p>
如圖,在等邊△ABC中,點(diǎn)D為BC邊上的點(diǎn),DE⊥BC交AB于E,DF⊥AC于F,則∠EDF的度數(shù)為.
如圖,直線y=﹣ x+4與x軸、y軸分別交于A、B兩點(diǎn),把△AOB繞點(diǎn)A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是.
如圖,矩形ABCD中,AB=8,BC=4,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是.
12=1= ×1×2×(2+1)
12+22= ×2×3×(4+1)
12+22+32= ×3×4×(6+1)
12+22+32+42= ×4×5×(8+1)…
可以推測12+22+32+…+n2= .
解不等式x﹣≥x﹣ , 并把它的解集在數(shù)軸上表示出來
如圖,已知在△ABC中,∠A=90°
感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
表1
一班 | 5 | 8 | 8 | 9 | 8 | 10 | 10 | 8 | 5 | 5 |
二班 | 10 | 6 | 6 | 9 | 10 | 4 | 5 | 7 | 10 | 8 |
表2
班級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 及格率 | 優(yōu)秀率 |
一班 | 7.6 | 8 | a | 3.82 | 70% | 30% |
二班 | b | 7.5 | 10 | 4.94 | 80% | 40% |
如圖,已知AB為⊙O直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E,OE交AD于點(diǎn)F,cos∠BAC=
若AF=8,求DF的長.
市一中準(zhǔn)備組織學(xué)生及學(xué)生家長到武漢大學(xué)參觀體驗,為了便于管理,所有人員到武漢必須乘坐在同一列動車上;根據(jù)報名人數(shù),若都買 一等座單程火車票需2556元,若都買二等座單程火車票且花錢最少,則需1530元;已知學(xué)生家長與教師的人數(shù)之比為2:1,安陸到武漢的動車票價格(動 車學(xué)生票只有二等座可以打6折)如下表所示:
拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2).
①過點(diǎn)E作x軸的平行線,與BC相交于點(diǎn)D(如圖所示),當(dāng)t為何值時, 的值最小,求出這個最小值并寫出此時點(diǎn)E、P的坐標(biāo);
②在滿足①的條件下,拋物線的對稱軸上是否存在點(diǎn)F,使△EFP為直角三角形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.