①三角形有且只有一個內(nèi)切圓;
②四邊形的內(nèi)角和與外角和相等;
③順次連接四邊形各邊中點所得的四邊形一定是菱形;
④一組對邊平行且一組對角相等的四邊形是平行四邊形.
如圖,在空白網(wǎng)格內(nèi)將某一個小正方形涂成陰影部分,且所涂的小正方形與原陰影圖形的小正方形至少有一邊重合.小紅按要求涂了一個正方形,所得到的陰影圖形恰好是軸對稱圖形的概率為( ?。?br>
應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標(biāo)應(yīng)記為( )
甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.則下列結(jié)論:
①a=40,m=1;
②乙的速度是80km/h;
③甲比乙遲 h到達B地;
④乙車行駛 小時或 小時,兩車恰好相距50km.
正確的個數(shù)是( )
①A⊕B=(x1+x2 , y1+y2);②A?B=x1x2+y1y2;③當(dāng)x1=x2且y1=y2時,A=B,有下列四個命題:
①若A(1,2),B(2,﹣1),則A⊕B=(3,1),A?B=0;
②若A⊕B=B⊕C,則A=C;
③若A?B=B?C,則A=C;
④對任意點A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正確命題的個數(shù)為( )
如果兩個三角形的兩條邊對應(yīng)相等,夾角互補,那么這兩個三角形叫做互補三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補三角形.
如圖,已知拋物線經(jīng)過點A(2,0)和B(t,0)(t≥2),與y軸交于點C,直線l:y=x+2t經(jīng)過點C,交x軸于點D,直線AE交拋物線于點E,且有∠CAE=∠CDO,作CF⊥AE于點F.