求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= , x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).
已知a,b為非負(fù)實(shí)數(shù),∵0,
∴ , 當(dāng)且僅當(dāng)“a=b”時(shí),等號(hào)成立.示例:當(dāng)x>0時(shí),求的最小值;
解: , 當(dāng) , 即x=2時(shí),y的最小值為5.
(1)若m>0,的最小值為 ;
(2)探究:當(dāng)x>0時(shí),求的最小值;
(3)如圖,已知P為雙曲線(x<0)上任意一點(diǎn),過(guò)點(diǎn)P作PB⊥x軸,PA⊥y軸且C(0,﹣4),D(6,0),求四邊形ABCD的面積的最小值,并求此時(shí)A,B的坐標(biāo).