久久京东热成人精品视频,伊人久久综合,国产一区二区精品自拍,在线精品国精品国产3d

<menu id="e206k"></menu>
<center id="e206k"></center>
  • <menu id="e206k"></menu>
    <center id="e206k"></center>
  • <menu id="e206k"><noscript id="e206k"></noscript></menu>
    題庫組卷系統(tǒng)-專注K12在線組卷服務(wù)
    當(dāng)前位置: 初中數(shù)學(xué) /備考專區(qū)
    試卷結(jié)構(gòu): 課后作業(yè) 日常測驗(yàn) 標(biāo)準(zhǔn)考試
    | 顯示答案解析 | 全部加入試題籃 | 平行組卷 試卷細(xì)目表 發(fā)布測評 在線自測 試卷分析 收藏試卷 試卷分享
    下載試卷 下載答題卡

    廣東省河源市紫金縣三校聯(lián)考2021-2022學(xué)年九年級上學(xué)期...

    更新時(shí)間:2024-07-13 瀏覽次數(shù):106 類型:月考試卷
    一、單選題
    二、填空題
    三、解答題
    • 18. (2022九上·汕尾期中) 已知關(guān)于 的一元二次方程 .
      1. (1) 若 ,求此方程的解;
      2. (2) 若該方程無實(shí)數(shù)根,求 的取值范圍.
    • 19. (2021九上·紫金月考) 如圖,四邊形ABCD是菱形,對角線AC,BD相交于點(diǎn)O,DH⊥AB 于點(diǎn)H,連OH接,求證:∠DHO=∠DCO.

    • 20. (2022八下·龍口期末) 某中學(xué)興趣小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊是由周長為30米的籬笆圍成.如圖所示,已知墻長為20米,設(shè)這個(gè)苗圃園垂直于墻的一邊長為x米

      1. (1) 若苗圃園的面積為108m2 , 求x的值,
      2. (2) 苗圃園的面積能達(dá)到120m2嗎?若能,求出x;若不能,說明理由.
    • 21. (2021九上·紫金月考) 如圖,在正方形ABCD中,E是對角線AC上一點(diǎn),F(xiàn)H⊥AC于點(diǎn)E,交AD,AB于點(diǎn)F,H.

      1. (1) 求證:CF=CH;
      2. (2) 若AH= CH,AB=4,求AH的長.
    • 22. (2024九上·望奎期末) 為迎接建黨100周年,某校組織學(xué)生開展了黨史知識競賽活動.競賽項(xiàng)目有:A . 回顧重要事件;B . 列舉革命先烈;C . 講述英雄故事;D . 歌頌時(shí)代精神.學(xué)校要求學(xué)生全員參加且每人只能參加一項(xiàng),為了解學(xué)生參加競賽情況,隨機(jī)調(diào)查了部分學(xué)生,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中信息解答下列問題:

      1. (1) 本次被調(diào)查的學(xué)生共有名;
      2. (2) 在扇形統(tǒng)計(jì)圖中“B項(xiàng)目”所對應(yīng)的扇形圓心角的度數(shù)為  ▲  ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
      3. (3) 從本次被調(diào)查的小華、小光、小艷、小萍這四名學(xué)生中,隨機(jī)抽出2名同學(xué)去做宣講員,請用列表或畫樹狀圖的方法求出恰好小華和小艷被抽中的概率.
    • 23. (2021九上·紫金月考) 蘇州某工廠生產(chǎn)一批小家電,2019年的出廠價(jià)是144元,2020年、2021年連續(xù)兩年改進(jìn)技術(shù)降低成本,2021年出廠價(jià)調(diào)整為100元.
      1. (1) 這兩年出廠價(jià)下降的百分比相同,求平均下降的百分率(精確到0.01%).
      2. (2) 某商場今年銷售這批小家電的售價(jià)為140元時(shí),平均每天可銷售20臺,為了減少庫存,商場決定降價(jià)銷售,經(jīng)調(diào)查發(fā)現(xiàn)小家電單價(jià)每降低5元,每天可多售出10臺,如果每天盈利1250元,銷售單價(jià)應(yīng)為多少元?
    • 24. (2021九上·紫金月考) 如圖所示,在 中, 平分 平分 .

      1. (1) 求證:四邊形 是平行四邊形;
      2. (2) 如圖2,當(dāng)E為 的中點(diǎn)時(shí),連接 ,求證: ;
      3. (3) 在(2)的條件下,若 ,直接寫出 的面積.
    • 25. (2021九上·紫金月考) 如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,D,E是斜邊AB上的兩個(gè)動點(diǎn)(不與點(diǎn)A,B重合),過E作EF⊥BC于點(diǎn)F,設(shè)BD=m,EF=n,且m=12﹣4n,連結(jié)DF.

      1. (1) 當(dāng)m=8時(shí),

        ①求DE長;

        ②求△BDF的面積.

      2. (2) 是否存在點(diǎn)P,使得以D,E,F(xiàn),P四點(diǎn)為頂點(diǎn)的四邊形是菱形,若存在,請求出n的值,若不存在,請說明理由;
      3. (3) 當(dāng)點(diǎn)B關(guān)于直線DF的對稱點(diǎn)B'落在直線EF上時(shí),請直接寫出n的值.

    微信掃碼預(yù)覽、分享更方便

    試卷信息