甲、乙兩位同學(xué)在一次用頻率估計(jì)概率的實(shí)驗(yàn)中統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率給出的統(tǒng)計(jì)圖如圖所示,則符合這一結(jié)果的實(shí)驗(yàn)可能是( ?。?/p>
某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( ?。?/p>
投籃次數(shù)(n) | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(shù)(m) | 28 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率(m/n) | 0.56 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
(1)求參加一次這種游戲活動(dòng)得到福娃玩具的概率;
(2)請(qǐng)你估計(jì)袋中白球接近多少個(gè)?
一粒木質(zhì)中國(guó)象棋棋子“車”,它的正面雕刻一個(gè)“車”字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的兩面不均勻,為了估計(jì)“車”字朝上的機(jī)會(huì),某實(shí)驗(yàn)小組做了棋子下拋實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)整理如下:
實(shí)驗(yàn)次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的頻數(shù) | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相應(yīng)的頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整,并畫(huà)出折線統(tǒng)計(jì)圖中剩余部分.
(2)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),這個(gè)實(shí)驗(yàn)的頻率將接近于該事件發(fā)生的機(jī)會(huì),請(qǐng)估計(jì)這個(gè)機(jī)會(huì)約是多少?
(3)在(2)的基礎(chǔ)上,進(jìn)一步估計(jì):將該“車”字棋子,按照實(shí)驗(yàn)要求連續(xù)拋2次,則剛好使“車”字一次字面朝上,一次朝下的可能性為多少?
向上點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計(jì)算出現(xiàn)向上點(diǎn)數(shù)為6的頻率.
(2)丙說(shuō):“如果拋600次,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)一定是100次.”請(qǐng)判斷丙的說(shuō)法是否正確并說(shuō)明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點(diǎn)數(shù)之和為3的倍數(shù)的概率.
(1)試求出a的值;
(2)從中任意摸出一個(gè)球,下列事件:①該球是紅球;②該球是白球;③該球是藍(lán)球.試估計(jì)這三個(gè)事件發(fā)生的可能性的大小,并將三個(gè)事件按發(fā)生的可能性從小到大的順序排列(用序號(hào)表示事件).