①若考慮到小區(qū)P居住的老年人較多,計劃建一個離小區(qū)P最近的車站,請在公路l上畫出車站的位置(用點M表示);
②若考慮到修路的費用問題,希望車站的位置到小區(qū)P和小區(qū)Q的距離之和最小,請在公路l上畫出車站的位置(用點N表示).
定義:我們把絕對值符號內(nèi)含有未知數(shù)的方程叫做“含有絕對值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有絕對值的方程.
怎樣求含有絕對值的方程的解呢?基本思路是:含有絕對值的方程→不含有絕對值的方程.
我們知道,根據(jù)絕對值的意義,由|x|=2,可得x=2或x=﹣2.
我們只要把2x﹣1看成一個整體就可以根據(jù)絕對值的意義進一步解決問題.
解:根據(jù)絕對值的意義,得2x﹣1=3或2x﹣1= .
解這兩個一元一次方程,得x=2或x=﹣1.
檢驗:
①當(dāng)x=2時,
原方程的左邊=|2x﹣1|=|2×2﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=2是原方程的解.
②當(dāng)x=﹣1時,
原方程的左邊=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=﹣1是原方程的解.
綜合①②可知,原方程的解是:x=2,x=﹣1.
【解決問題】
解方程:| |﹣x=1.