3.24 | 3.25 | 3.26 | |
0.01 | 0.03 |
(1)求證:△ACD∽△BFD;
(2)若∠ABD=45°,AC=3時,求BF的長.
(1)本次接受調(diào)查的總?cè)藬?shù)是 人,扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角度數(shù)是 度,請補(bǔ)全條形統(tǒng)計圖;
(2)已知這5名學(xué)生中有2名女同學(xué),要從這5名學(xué)生中任選兩名同學(xué)匯報調(diào)查結(jié)果.請用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
材料:為解方程x4-x2-6=0,可將方程變形為(x2)2-x2-6=0,然后設(shè)x2=y(tǒng),則(x2)2=y(tǒng)2 , 原方程化為y2-y-6=0①,
解得y1=-2,y2=3.
當(dāng)y1=-2時,x2=-2無意義,舍去;當(dāng)y2=3時,x2=3,解得x=±.
所以,原方程的解為x1= , x2=-.
問題:
(1)在由原方程得到方程①的過程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.
設(shè)銷售單價為每件元,月銷售利潤為元,求與之間的函數(shù)關(guān)系式(不必寫出的取值范圍);
商店想使月銷售利潤達(dá)到元,并使銷售量盡量大,請問該休閑衫的銷售單價應(yīng)定為多少元?