如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )
如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù) 的圖象相交于C,D兩點,分別過C,D兩點作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )
如圖,OABC是平行四邊形,對角線OB在軸正半軸上,位于第一象限的點A和第二象限的點C分別在雙曲線y= 和y= 的一支上,分別過點A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
① = ;
②陰影部分面積是 (k1+k2);
③當(dāng)∠AOC=90°時,|k1|=|k2|;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.
其中正確的結(jié)論是(把所有正確的結(jié)論的序號都填上).
探究:如圖1 ,直線l與坐標軸的正半軸分別交于A,B兩點,與反比例函數(shù) 的圖象交于C,D兩點(點C在點D的左邊),過點C作CE⊥y軸于點E,過點D作DF⊥x軸于點F,CE與DF交于點G(a , b).
①若 ,請用含n的代數(shù)式表示 ;
②求證: ;
應(yīng)用:如圖2,直線l與坐標軸的正半軸分別交于點A,B兩點,與反比例函數(shù) 的圖象交于點C,D兩點(點C在點D的左邊),已知 ,△OBD的面積為1,試用含m的代數(shù)式表示k.