久久京东热成人精品视频,伊人久久综合,国产一区二区精品自拍,在线精品国精品国产3d

<menu id="e206k"></menu>
<center id="e206k"></center>
  • <menu id="e206k"></menu>
    <center id="e206k"></center>
  • <menu id="e206k"><noscript id="e206k"></noscript></menu>
    題庫組卷系統(tǒng)-專注K12在線組卷服務(wù)
    當(dāng)前位置: 初中數(shù)學(xué) /中考專區(qū)
    試卷結(jié)構(gòu): 課后作業(yè) 日常測驗 標(biāo)準(zhǔn)考試
    | 顯示答案解析 | 全部加入試題籃 | 平行組卷 試卷細目表 發(fā)布測評 在線自測 試卷分析 收藏試卷 試卷分享
    下載試卷 下載答題卡

    江蘇省常州市2023年中考一模數(shù)學(xué)試題

    更新時間:2023-05-14 瀏覽次數(shù):95 類型:中考模擬
    一、單選題
    二、填空題
    三、解答題
    • 21. (2023·常州模擬) 某校以“我最喜愛的體育運動”為主題對全校學(xué)生進行隨機抽樣調(diào)直,調(diào)查的運動項目有:籃球、羽毛球、乒乓球、跳繩及其它項目(每位同學(xué)僅選一項),根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.

      運動項目

      頻數(shù)(人數(shù))

      頻率

      籃球

      30

      0.25

      羽毛球

      m

      0.20

      乒乓球

      36

      n

      跳繩

      18

      0.15

      其它

      12

      0.10

      請根據(jù)以上圖表信息,解答下列問題:

      1. (1) 頻數(shù)分布表中的m=,n=,“乒乓球”所在的扇形的圓心角的度數(shù)為
      2. (2) 若該校有1000名學(xué)生,請估計最喜愛乒乓球這項運動的學(xué)生人數(shù).
    • 22. (2023·常州模擬) 進出校園測量體溫是學(xué)校常態(tài)化疫情防控的重要舉措,學(xué)校有A、B兩個測溫通道,甲、乙、丙三個同學(xué)上學(xué)進校園,隨機選擇一個通道測量體溫,
      1. (1) 甲同學(xué)通過A通道進入校園的概率是
      2. (2) 請用列表或畫樹狀圖的方法求出甲、乙、丙三個同學(xué)經(jīng)過同一個通道進校園的概率.
    • 23. (2023·常州模擬) 如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.

      1. (1) 以AB邊上一點O為圓心,過A,D兩點作⊙O;(用圓規(guī)、直尺作圖,不寫作法,但要保留作圖痕跡)
      2. (2) 判斷直線BC與⊙O的位置關(guān)系,并說明理由.
    • 24. (2023·常州模擬) 某小區(qū)門口安裝了汽車出入道閘.道閘關(guān)閉時,如圖①,四邊形為矩形,長6米,長2米,點距地面為0.4米.道閘打開的過程中,邊固定,連桿 , 分別繞點A,D轉(zhuǎn)動,且邊始終與邊平行.如圖②,當(dāng)?shù)篱l打開至時,邊上一點到地面的距離為2.4米,求點的距離的長;

    • 25. (2023·常州模擬) 已知直線過點.點為直線上一點,其橫坐標(biāo)為.過點軸的垂線,與函數(shù)的圖象交于點.

      1. (1) 求的值;
      2. (2) ①求點的坐標(biāo)(用含的式子表示);

        ②若的面積等于3,求出點的橫坐標(biāo)的值.

    • 26. (2023·常州模擬) 如圖,點邊上一點,以為直徑的相切于點 , 連接.

      1. (1) 判斷是否相似?并說明理由。
      2. (2) 若的半徑為3, , 求的長度.
    • 27. (2023·常州模擬) 在平面直角坐標(biāo)系中,為平面內(nèi)不重合的兩個點,若、兩點的距離相等,則稱點是線段的“似中點”.

      1. (1) 已知 , , 在點、中,線段的“似中點”是點;
      2. (2) 直線軸交于點 , 與軸交于點.

        ①求在坐標(biāo)軸上的線段的“似中點”;

        ②若的半徑為2,圓心軸上,坐標(biāo)為上存在線段的“似中點”,請直接寫出的取值范圍.

    • 28. (2023·常州模擬) 如圖,拋物線經(jīng)過、三點,對稱軸與拋物線相交于點、與相交于點 , 與軸交于點 , 連接.

      1. (1) 求該拋物線的解析式;
      2. (2) 拋物線上是否存在一點 , 使的面積相等,若存在,請求出點的坐標(biāo);若不存在,說明理由.
      3. (3) 拋物線上存在一點 , 使 , 請直接寫出點的坐標(biāo);

    微信掃碼預(yù)覽、分享更方便

    試卷信息