實(shí)驗(yàn)次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
頻率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
①如果不等式的解集為 , 那么②已知二次函數(shù) , 當(dāng)時(shí),y隨x的增大而減?、垌槾芜B接對(duì)角線相等的四邊形的四邊中點(diǎn)所形成的圖形是菱形④各邊對(duì)應(yīng)成比例的兩個(gè)多邊形相似
甲:函數(shù)的圖象經(jīng)過點(diǎn)(0,1);
乙:y隨x的增大而減小;
丙:函數(shù)的圖象不經(jīng)過第三象限.
根據(jù)他們的敘述,寫出滿足上述性質(zhì)的一個(gè)函數(shù)表達(dá)式為 .
收集數(shù)據(jù):隨機(jī)抽取甲乙兩所學(xué)校的各20名學(xué)生的數(shù)學(xué)成績進(jìn)行分析(滿分為100分)
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 | 81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 | 90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述數(shù)據(jù):按如表數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)
分段學(xué)校 | |||||||
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 | 0 | 0 | 1 | 4 | 2 | 8 | 5 |
分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表
統(tǒng)計(jì)量學(xué)校 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 81.85 | a | b | 268.43 |
乙 | c | 86 | 88 | 115.25 |
得出結(jié)論
如圖1,在正方形ABCD中,E,F(xiàn),G分別是BC,AB,CD上的點(diǎn),F(xiàn)G⊥AE于點(diǎn)Q.求證:AE=FG.
如圖2,正方形網(wǎng)格中,點(diǎn)A,B,C,D為格點(diǎn),AB交CD于點(diǎn)O.求tan∠AOC的值;
如圖3,點(diǎn)P是線段AB上的動(dòng)點(diǎn),分別以AP,BP為邊在AB的同側(cè)作正方形APCD與正方形PBEF,連接DE分別交線段BC,PC于點(diǎn)M,N.
①求∠DMC的度數(shù);
②連接AC交DE于點(diǎn)H,直接寫出的值.