⑴數(shù)據(jù)5、2、﹣3、0的極差是8;
⑵方差越大,說明數(shù)據(jù)就越穩(wěn)定;
⑶不在同一直線上的三點確定一個圓;
⑷在半徑為5的⊙O中,弦AB∥CD,且AB=6,CD=8,則AB與CD之間距離為7
其中真命題的個數(shù)為( )
如圖是一個正方體展開圖,把展開圖折疊成正方體后,“我”字一面相對面上的字是.
為了推動陽光體育運動的廣泛開展,引導(dǎo)學(xué)生走向操場,走進大自然,走到陽光下,積極參加體育鍛煉,學(xué)校準備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
方格紙中每個小格的頂點叫做格點,以格點連線為邊的三角形叫做格點三角形.
①在10×10的方格中(每個小方格的邊長為1個單位),畫一個面積為2的格點鈍角三角形ABC,并標明相應(yīng)字母;
②再在方格中畫一個格點△DEF,使得△DEF∽△ABC,且面積之比為2:1,并加以證明.
我市某中學(xué)在創(chuàng)建“特色校園”的活動中,將本校的辦學(xué)理念做成宣傳牌(AB),放置在教學(xué)樓的頂部(如圖所示).小明在操場上的點D處,用1米高的測角儀CD,從點C測得宣傳牌的底部B的仰角為37°,然后向教學(xué)樓正方向走了4米到達點F處,又從點E測得宣傳牌的頂部A的仰角為45°.已知教學(xué)樓高BM=17米,且點A,B,M在同一直線上,求宣傳牌AB的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.73,sin37°≈0.60,cos37°≈0.81,tan37°≈0.75).
閱讀材料:如圖1,在平面直角坐標系中,A、B兩點的坐標分別為A(x1 , y1),B(x2 , y2),AB中點P的坐標為(xp , yp).由xp﹣x1=x2﹣xp , 得xp= ,同理yp= ,所以AB的中點坐標為( , ).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A、B兩點間的距離公式為AB= .這兩公式對A、B在平面直角坐標系中其它位置也成立.解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(a)求A、B兩點的坐標及C點的坐標;
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.
圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連結(jié)AB、AE、BE.已知tan∠CBE= ,A(3,0),D(﹣1,0),E(0,3).