如圖1,// , 點(diǎn)在直線、之間.求證: .
小賢的解法如下:
解:如圖1,過點(diǎn)作EF∥AB.
因?yàn)?img class="mathml" src="http://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmtext%3E%E2%88%A5%3C%2Fmtext%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E" style="max-width:100%;vertical-align: middle;"> , 所以 .
因?yàn)?img class="mathml" src="http://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmtext%3E%E2%88%A5%3C%2Fmtext%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3C%2Fmath%3E" style="max-width:100%;vertical-align: middle;"> , 所以 .
因?yàn)?img class="mathml" src="http://math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EE%3C%2Fmi%3E%3Cmi%3EF%3C%2Fmi%3E%3Cmtext%3E%E2%88%A5%3C%2Fmtext%3E%3Cmi%3EC%3C%2Fmi%3E%3Cmi%3ED%3C%2Fmi%3E%3C%2Fmath%3E" style="max-width:100%;vertical-align: middle;"> , 所以(根據(jù)1),
所以 ,
即 .