(1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1 .
(2)寫出點(diǎn)A1 , B1 , C1的坐標(biāo)(直接寫答案).
小明是這樣做的:
解:以點(diǎn)A為端點(diǎn)作射線AD.
∵∠1是△ABD的外角,∴∠1= ∠B+∠BAD.
同理∠2=∠C+∠CAD.
∴∠1+∠2=∠B+∠BAD+∠C+∠CAD.即∠BDC=∠B+∠C+∠BAC.
小英的思路是:延長BD交AC于點(diǎn)E.
(1)按小英的思路完成∠BDC=∠B+∠C+∠BAC這一結(jié)論.
(2)按照上面的思路解決如下問題:如圖:在△ABC中,BE、CD分別是∠ABC∠ACB的角平分線,交AC于E,交AB于D.BE、CD相交于點(diǎn)O,∠A=60°.求∠BOC的度數(shù).
(3)如圖:△ABC中,BO、CO分別是∠ABC與∠ACB的角平分線,且BO、CO相交于點(diǎn)O.猜想∠BOC與∠A有怎樣的關(guān)系,并加以證明.