點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為AB,則在數(shù)軸上A、B兩點之間的距離AB=|a﹣b|.
所以式子|x﹣2|的幾何意義是數(shù)軸上表示x的點與表示2的點之間的距離.借助于數(shù)軸回答下列問題:
①數(shù)軸上表示2和5兩點之間的距離是,數(shù)軸上表示1和﹣3的兩點之間的距離是.
②數(shù)軸上表示x和﹣2的兩點之間的距離表示為.
③數(shù)軸上表示x的點到表示1的點的距離與它到表示﹣3的點的距離之和可表示為:|x﹣1|+|x+3|.則|x﹣1|+|x+3|的最小值是.
④若|x﹣3|+|x+1|=8,則x=
我們知道:|x|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點值).在實數(shù)范圍內(nèi),零點值x=﹣1和,x=2可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡代數(shù)式|x+1|+|x﹣2|可分以下3種情況:
①當(dāng)x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當(dāng)﹣1≤x<2時,原式=x+1﹣(x﹣2)=3;
③當(dāng)x≥2時,原式=x+1+x﹣2=2x﹣1.綜上討論,原式= .
通過以上閱讀,請你解決以下問題: