課題 |
測量河流寬度 |
||
測量工具 |
測量角度的儀器,皮尺等 |
||
測量小組 |
第一小組 |
第二小組 |
第三小組 |
測量方案示意圖 |
|
|
|
說明 | 點B,C在點A的正東方向 | 點B,D在點A的正東方向 | 點B在點A的正東方向,點C在點A的正西方向. |
測量數(shù)據(jù) | BC=60m, ∠ABH=70°, ∠ACH=35°. | BD=20m, ∠ABH=70°, ∠BCD=35°. | BC=101m, ∠ABH=70°, ∠ACH=35°. |
問題的轉(zhuǎn)化:由n上面問題比較復雜,所以我們先來研究跟它類似的一個較簡單的問題:
n條直線最多可以把平面分割成多少個部分?
如圖1,很明顯,平面中畫出1條直線時,會得到1+1=2個部分;所以,1條直線最多可以把平面分割成2個部分;
如圖2,平面中畫出第2條直線時,新增的一條直線與已知的1條直線最多有1個交點,這個交點會把新增的這條直線分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2條直線最多可以把平面分割成4個部分;
如圖3,平面中畫出第3條直線時,新增的一條直線與已知的2條直線最多有2個交點,這2個交點會把新增的這條直線分成3部分,從而多出3個部分,即總共會得到1+1+2+3=7個部分,所以,3條直線最多可以把平面分割成7個部分;
平面中畫出第4條直線時,新增的一條直線與已知的3條直線最多有3個交點,這3個交點會把新增的這條直線分成4部分,從而多出4個部分,即總共會得到1+1+2+3+4=11個部分,所以,4條直線最多可以把平面分割成11個部分;…
①請你仿照前面的推導過程,寫出“5條直線最多可以把平面分割成多少個部分”的推導過程(只寫推導過程,不畫圖);
②根據(jù)遞推規(guī)律用n的代數(shù)式填空:n條直線最多可以把平面分割成幾個部分.
問題的解決:借助前面的研究,我們繼續(xù)開頭的問題;n個平面最多可以把空間分割成多少個部分?
首先,很明顯,空間中畫出1個平面時,會得到1+1=2個部分;所以,1個平面最多可以把空間分割成2個部分;
空間中有2個平面時,新增的一個平面與已知的1個平面最多有1條交線,這1條交線會把新增的這個平面最多分成2部分,從而多出2個部分,即總共會得到1+1+2=4個部分,所以,2個平面最多可以把空間分割成4個部分;
空間中有3個平面時,新增的一個平面與已知的2個平面最多有2條交線,這2條交線會把新增的這個平面最多分成4部分,從而多出4個部分,即總共會得到1+1+2+4=8個部分,所以,3個平面最多可以把空間分割成8個部分;
空間中有4個平面時,新增的一個平面與已知的3個平面最多有3條交線,這3條交線會把新增的這個平面最多分成7部分,從而多出7個部分,即總共會得到1+1+2+4+7=15個部分,所以,4個平面最多可以把空間分割成15個部分;
空間中有5個平面時,新增的一個平面與已知的4個平面最多有4條交線,這4條交線會把新增的這個平面最多分成11部分,而從多出11個部分,即總共會得到1+1+2+4+7+11=26個部分,所以,5個平面最多可以把空間分割成26個部分;…
③請你仿照前面的推導過程,寫出“6個平面最多可以把空間分割成多少個部分?”的推導過程(只寫推導過程,不畫圖);
④根據(jù)遞推規(guī)律填寫結(jié)果:10個平面最多可以把空間分割成幾個部分;
⑤設n個平面最多可以把空間分割成Sn個部分,設n-1個平面最多可以把空間分割成Sn?1個部分,前面的遞推規(guī)律可以用Sn?1和n的代數(shù)式表示Sn;這個等式是Sn等于多少.