解:過點(diǎn) P 作 PM∥AB
∵AB∥CD(已知)
∴PM∥CD ( )
∴∠B+∠1=180°( )
∴∠C+∠2=180°( )
∵∠BPC=∠1+∠2
∴∠B+∠C+∠BPC=360°
(I)求點(diǎn)P的坐標(biāo);
(Ⅱ)試比較∠PAD和∠POC的大小,并說明理由.
如圖1,已知AB∥CD,∠PBA=125°,∠PCD=155°,求∠BPC的度數(shù).
佩佩同學(xué)的思路:過點(diǎn)P作PG∥AB,進(jìn)而PG∥CD,由平行線的性質(zhì)來求∠BPC,求得∠BPC=
圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,∠ACB=90°,DF∥CG,AB與FD相交于點(diǎn)E,有一動點(diǎn)P在邊BC上運(yùn)動,連接PE,PA,記∠PED=∠α,∠PAC=∠β.
①如圖2,當(dāng)點(diǎn)P在C,D兩點(diǎn)之間運(yùn)動時,請直接寫出∠APE與∠α,∠β之間的數(shù)量關(guān)系;
②如圖3,當(dāng)點(diǎn)P在B,D兩點(diǎn)之間運(yùn)動時,∠APE與∠α,∠β之間有何數(shù)量關(guān)系?請判斷并說明理由;
當(dāng)點(diǎn)P在C,D兩點(diǎn)之間運(yùn)動時,若∠PED,∠PAC的角平分線EN,AN相交于點(diǎn)N,請直接寫出∠ANE與∠α,∠β之間的數(shù)量關(guān)系.