久久京东热成人精品视频,伊人久久综合,国产一区二区精品自拍,在线精品国精品国产3d

<menu id="e206k"></menu>
<center id="e206k"></center>
  • <menu id="e206k"></menu>
    <center id="e206k"></center>
  • <menu id="e206k"><noscript id="e206k"></noscript></menu>
    題庫(kù)組卷系統(tǒng)-專注K12在線組卷服務(wù)
    當(dāng)前位置: 初中數(shù)學(xué) /備考專區(qū)
    試卷結(jié)構(gòu): 課后作業(yè) 日常測(cè)驗(yàn) 標(biāo)準(zhǔn)考試
    | 顯示答案解析 | 全部加入試題籃 | 平行組卷 試卷細(xì)目表 發(fā)布測(cè)評(píng) 在線自測(cè) 試卷分析 收藏試卷 試卷分享
    下載試卷 下載答題卡

    山西省晉中市2020-2021學(xué)年九年級(jí)上學(xué)期數(shù)學(xué)第一次月考...

    更新時(shí)間:2024-07-13 瀏覽次數(shù):234 類(lèi)型:月考試卷
    一、單選題
    二、填空題
    三、解答題
    • 16. (2020九上·晉中月考)              
      1. (1) 計(jì)算:
      2. (2) 先化簡(jiǎn),再求值: ,其中
    • 17. (2020九上·晉中月考) 如圖1,已知 .請(qǐng)閱讀下列作圖過(guò)程,并解答所提出的問(wèn)題.

      ⑴如圖2,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別與 , 交于B,C兩點(diǎn);

      ⑵如圖3,分別以B,C兩點(diǎn)為圓心,以大于 的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D;

      ⑶如圖4,作射線 ,連接 ,與 交于點(diǎn)E.

      問(wèn)題:

      1. (1) 的度數(shù)為
      2. (2) 若 ,求 的長(zhǎng).
    • 18. (2020九上·晉中月考) 隨著疫情形勢(shì)逐漸好轉(zhuǎn),各地企業(yè)陸續(xù)復(fù)工復(fù)產(chǎn).為了促進(jìn)員工進(jìn)一步重視安全生產(chǎn),掌握防疫知識(shí),增強(qiáng)員工“科學(xué)防疫、安全生產(chǎn)”的意識(shí),某企業(yè)在復(fù)工復(fù)產(chǎn)后組織開(kāi)展了防疫安全知識(shí)競(jìng)賽活動(dòng).并隨機(jī)抽取了部分員工的競(jìng)賽成績(jī)(百分制)進(jìn)行整理和分析(將分?jǐn)?shù)分為四組:A. ,B. ,C. ,D. ,下面給出了部分信息:

      抽取的員工競(jìng)賽成績(jī)分布表

      組別

      分?jǐn)?shù)/分

      頻數(shù)

      A

      B

      12

      C

      6

      D

      3

      扇形統(tǒng)計(jì)圖

      B組的成績(jī)分別是88,86,80,86,84,82,80,86,82,84,88,86.(單位:分)

      請(qǐng)解答下列問(wèn)題:

      1. (1) 的值是,B所占的百分比是,B組數(shù)據(jù)的中位數(shù)是
      2. (2) 該企業(yè)共有320名員工參加了此次防疫安全知識(shí)競(jìng)賽活動(dòng),估計(jì)在本次活動(dòng)中70分以下的人數(shù).
      3. (3) 疫情期間,該企業(yè)的一些員工積極報(bào)名參加社區(qū)志愿者,挺身而出,服務(wù)于抗疫一線.為了進(jìn)一步普及防疫知識(shí),弘揚(yáng)抗疫精神,該企業(yè)宣傳部門(mén)打算從志愿者小王、小李、小張和小趙四人中隨機(jī)抽取兩人分享抗疫故事,請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出小王和小李被同時(shí)選中的概率.
    • 19. (2020九上·晉中月考) 端午節(jié)是中華民族的傳統(tǒng)節(jié)日,全國(guó)各地素來(lái)都有端午節(jié)吃粽子的習(xí)俗.在今年端午節(jié)前夕,某商場(chǎng)采購(gòu)了一批甲、乙兩種品牌的粽子共600盒,其中采購(gòu)甲品牌粽子花費(fèi)7200元,采購(gòu)乙品牌粽子花費(fèi)9600元,已知每盒甲品牌粽子的進(jìn)價(jià)是乙品牌粽子進(jìn)價(jià)的1.5倍.

      1. (1) 求該商場(chǎng)采購(gòu)的甲、乙兩種品牌的粽子每盒進(jìn)價(jià)分別是多少元.
      2. (2) 該商場(chǎng)原計(jì)劃確定甲品牌粽子的售價(jià)為60元/盒,乙品牌粽子的售價(jià)為32元/盒.后調(diào)整銷(xiāo)售策略,對(duì)甲品牌粽子進(jìn)行打折銷(xiāo)售,乙品牌粽子按原價(jià)售出.若要使購(gòu)進(jìn)的甲、乙兩種品牌的粽子全部售出后所獲利潤(rùn)不低于5600元,則每盒甲品牌粽子最低能打幾折?
    • 20. (2020九上·晉中月考) 某“綜合與實(shí)踐”小組開(kāi)展了測(cè)量本校對(duì)面山上一座古塔高度的實(shí)活動(dòng),他們制訂了方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.他們?cè)谠撋侥_的一塊平地上,選擇兩個(gè)不同測(cè)點(diǎn),分別測(cè)量山頂和塔頂?shù)母┙?,以及這兩個(gè)測(cè)點(diǎn)之間的距離.為了減小測(cè)量誤差,小組在測(cè)量俯角的度數(shù)以及兩個(gè)測(cè)點(diǎn)之間的距離時(shí),都分別測(cè)量了三次并取它們的平均值為測(cè)量結(jié)果,測(cè)量數(shù)據(jù)如下表(不完整).

      課題

      測(cè)量山上塔的高度

      測(cè)量工具

      測(cè)量角度的儀器,皮尺等

      測(cè)量示意圖

      說(shuō)明:線段 CD 表示山高, CB 表示塔的高,測(cè)量角度的儀器的高度 ,端點(diǎn)B,C,D,A,E在同一豎直平面內(nèi),點(diǎn)D,C,B共線,點(diǎn)D,A,E共線.

      測(cè)量數(shù)據(jù)

      測(cè)量項(xiàng)目

      第一次

      第二次

      第三次

      平均值

      的度數(shù)

      63.6°

      63.3°

      63.3°

      63.4°

      的度數(shù)

      29.9°

      29.8°

      30.3°

      30°

      的度數(shù)

      44.9°

      45.3°

      44.8°

      __________

      A,E之間的距離

      50.1m

      49.8m

      50.1m

      __________

      1. (1) 三次測(cè)量 的度數(shù)平均值是;A,E之間的距離的平均值是m.
      2. (2) 根據(jù)以上測(cè)量結(jié)果,請(qǐng)你幫助該“綜合與實(shí)踐”小組求出塔 BC 的高度.

        (結(jié)果精確到0.1m.參考數(shù)據(jù): , , , ,

    • 21. (2020九上·晉中月考) 閱讀材料

      公元前5世紀(jì),古希臘學(xué)者提出了一個(gè)問(wèn)題:能否用尺規(guī)三等分一個(gè)任意角?為了解決這個(gè)問(wèn)題,數(shù)學(xué)家們花費(fèi)了大量的時(shí)間和精力.直到1837年,數(shù)學(xué)家們才證明了“三等分任意角”是不能用尺規(guī)完成的.那么.退而求其次,能不能借助一些特殊曲線解決這一問(wèn)題呢?

      在研究這個(gè)問(wèn)題的過(guò)程中,古希臘數(shù)學(xué)家帕普斯給出的一方法如下:如圖,將給定的銳角 置于平面直角坐標(biāo)系中,角的一邊 的圖象交于點(diǎn)M, 軸上,以點(diǎn)M為圓心, 為半徑畫(huà)弧交 的圖象于點(diǎn)N.分別過(guò)點(diǎn)M和N作 軸和 軸的平行線,兩線相交于點(diǎn)E,F(xiàn), 相交于點(diǎn)G,連接 得到

      此時(shí),愛(ài)思考的小明對(duì)這一結(jié)論展開(kāi)了證明.下面是他的部分證明思路:

      由題意,可知點(diǎn)M,N在反比例函數(shù) 的圖象上,

      先假設(shè)點(diǎn)M,N的坐標(biāo)分別為 ,

      則點(diǎn)E,F(xiàn)的坐標(biāo)可表示為 ,

      則直線 的表達(dá)式為_(kāi)_.

      由此,可以判斷矩形 的頂點(diǎn)E在直線 上.

      請(qǐng)根據(jù)以上材料,解答下列問(wèn)題:

      1. (1) 用含 , 的代數(shù)式表示直線 的表達(dá)式:
      2. (2) 試接著上面小明所提供的證明思路,繼續(xù)完成“ ”的證明.
    • 22. (2020九上·晉中月考) 綜合與實(shí)踐
      1. (1) 任意一個(gè)四邊形 通過(guò)剪裁,都可以拼接成一個(gè)三角形,方法如下:如圖1,E,F(xiàn),G,H分別是邊 , , 的中點(diǎn),連接 ,P是線段 的中點(diǎn),連接 ,沿線段 , 剪開(kāi),將四邊形 分成①,②,③,④四部分,按如圖2所示的方式即可拼成一個(gè)無(wú)縫隙也不重疊的

        關(guān)于在拼接過(guò)程中用到的圖形的變換,說(shuō)法正確的是(    )

        A . ①→①是軸對(duì)稱 B . ②→②是平移 C . ③→③是中心對(duì)稱 D . ④→④是中心對(duì)稱
      2. (2) 如圖3,連接 , ,判斷四邊形 的形狀,并說(shuō)明理由.
      3. (3) 若 是一個(gè)邊長(zhǎng)為4的等邊三角形,則四邊形 的對(duì)角線 的最小值為
    • 23. (2020九上·晉中月考) 綜合與探究

      如圖,拋物線 軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與 軸正半軸交于點(diǎn)C.

      1. (1) 連接 , ,若 的面積為10,求拋物線的函數(shù)表達(dá)式.
      2. (2) 若P是 軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于 軸的直線分別交直線 和拋物線于點(diǎn)D和點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為

        ①當(dāng)點(diǎn)E在第一象限,且 時(shí),求 的值.

        ②若D,E,P三個(gè)點(diǎn)中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱D,E,P三點(diǎn)為“共生點(diǎn)”.當(dāng)點(diǎn)D,E,P三點(diǎn)為“共生點(diǎn)”時(shí),請(qǐng)直接寫(xiě)出 的值.

    微信掃碼預(yù)覽、分享更方便

    試卷信息