①“快車”行駛里程不超過5公里計費(fèi)8元;
②“順風(fēng)車”行駛里程超過2公里的部分,每公里計費(fèi)1.2元;
③A點(diǎn)的坐標(biāo)為(6.5,10.4);
④從合肥西站到會展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元.
cm2 . (結(jié)果保留π)
①OG= AB;
②與△EGD全等的三角形共有5個;
③S四邊形CDGF>S△ABF;
④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.
②畫出△A1B1C1向下平移3個單位得到的△A2B2C2;
如圖,正方形ABCD內(nèi)部有若干個點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):
正方形ABCD內(nèi)點(diǎn)的個數(shù) | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的個數(shù) | 4 | 6 | … |
如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度.
如圖1,當(dāng)BC=3時,求DM的長.
如圖2,以AB為底邊在AB的左側(cè)作等腰△ABE,并且使頂角∠AEB=2∠BAC,連接EM.
①判斷四邊形AEMD的形狀,并說明理由.
②設(shè)BC=x(x>0),四邊形AEMD的面積為y,試用含x的式子表示y,并說明是否存在x的值,使得四邊形AEMD的面積等于△ABC的面積?若存在,請求出x的值;若不存在,請說明理由.