①作∠ACB的平分線交AB于D;
②過點(diǎn)D作DE⊥BC,垂足為E。
(所寫結(jié)論不能與題中舉例相同且只要寫出3個(gè)即可)
① ,②,③,
提出問題:①如圖,如果∠A=∠C,∠B=∠D,AB=CD,那么第一個(gè)三角形與第二個(gè)三角形全等嗎?你的判斷是,(填“是”或“否”)判斷的依據(jù)是。
②如圖,如果∠A=∠E,∠B=∠F,2AB=EF,那么第一個(gè)三角形與第三個(gè)三角形相似嗎?你的判斷是,(填“是”或“否”)
①已知:如圖,AB∥CD。AD與BC相交于點(diǎn)O,試說明△ABO∽△DCO。
②已知:如圖,在△ABC中,點(diǎn)D、E、F分別在邊BC、AB、AC上,∠B=∠C=∠EDF,試說明△BDE∽△CFD.
試探究線段BD、CE、DE可以組成什么樣的三角形。我們可以過點(diǎn)B作BF⊥BC,使BF=EC,連接AF、DF,易得∠AFB=45°進(jìn)而得到△AFB≌△AEC,相當(dāng)于把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB,請(qǐng)接著完成下面的推理過程:
∵△AFB≌△AEC,
∴∠BAF=,AF=AE,
∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠CAE=,
∴∠BAF+∠BAD=45°,
∴∠DAF=45°=,
在△DAF與△DAE中,
AF=AE,
∠DAF=∠DAE,
AD=AD,
∴△DAF≌△DAE,
∴DF=,
∵BD、BF、DF組成直角三角形,
∴BD、CE、DE組成直角三角形.
① 如圖②,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上,∠EAF=45°試判斷線段BE、DF、EF之間的數(shù)量關(guān)系,并說明理由。
② 如圖③,在①的基礎(chǔ)上若點(diǎn)E、F分別在BC和CD的延長線,其他條件不變,①中的關(guān)系在圖③中是否仍然成立?若成立請(qǐng)說明理由;若不成立請(qǐng)寫出新的關(guān)系,并說明理由。