如圖,A,B是半徑為1的⊙O上兩點,且OA⊥OB,點P從點A出發(fā),在⊙O上以每秒一個單位長度的速度勻速運動,回到點A運動結(jié)束,設(shè)運動時間為x(單位:s),弦BP的長為y,那么下列圖象中可能表示y與x函數(shù)關(guān)系的是( )
設(shè)這種雙肩包每天的銷售利潤為w元.
①當(dāng)n≤x≤﹣1時,y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)C2:y=m(x﹣h)2+k的圖象由函數(shù)C1的圖象平移得到,其頂點P落在以原點為圓心,半徑為 的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點為M,求點P與點M距離最大時函數(shù)C2的解析式.
定義:點P是△ABC內(nèi)部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P是△ABC的自相似點.
請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點M是曲線y= (x>0)上的任意一點,點N是x軸正半軸上的任意一點.
如圖2,點P是OM上一點,∠ONP=∠M,試說明點P是△MON的自相似點;當(dāng)點M的坐標(biāo)是( ,3),點N的坐標(biāo)是( ,0)時,求點P的坐標(biāo);
如圖3,當(dāng)點M的坐標(biāo)是(3, ),點N的坐標(biāo)是(2,0)時,求△MON的自相似點的坐標(biāo);