如圖,點(diǎn)A、B是雙曲線y= 上的點(diǎn),分別經(jīng)過A、B兩點(diǎn)向x軸、y軸作垂線段,若S陰影=1,則S1+S2=
證明:∵AB切⊙O于點(diǎn)A,∴∠CAB=90°,又∵AC是直徑,∴∠P=90°∴∠CAB=∠P
問題拓展:若AC不經(jīng)過圓心O(如圖3),該結(jié)論:弦切角∠CAB=∠P還成立嗎?請說明理由.
知識運(yùn)用:如圖4,AD是△ABC中∠BAC的平分線,經(jīng)過點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F.求證:EF∥BC.
如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A(2 ,1),射線AB與反比例函數(shù)圖象交與另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
如圖3,M是線段AC上方反比例函數(shù)圖象上一動點(diǎn),過M作直線l⊥x軸,與AC相交于N,連接CM,求△CMN面積的最大值.