數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義證明完全平方公式.
證明:將一個邊長為a的正方形的邊長增加b,形成兩個矩形和兩個正方形,如圖1:
這個圖形的面積可以表示成:
(a+b)2或 a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
這就驗證了兩數(shù)和的完全平方公式.
類比解決:
①請你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫出圖形并寫出推理過程)
問題提出:如何利用圖形幾何意義的方法證明:13+23=32?
如圖2,A表示1個1×1的正方形,即:1×1×1=13
B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,因此:B、C、D就可以表示2個2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一個(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
嘗試解決:
②請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:13+23+33= ▲ . (要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).
問題拓廣:
③請用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= ▲ . (直接寫出結(jié)論即可,不必寫出解題過程)
解:原式
.
請仿照康康的解題過程計算: .
①已知 , 則;
②計算: .